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Abstract – Elliptical curve cryptography plays major role in data 

security which is more important in today’s networking and 

communication field. The proposal of the project is to realize an 

efficient GF (2m) curve-based crypto processor on FPGA.  Hybrid 

Karatsuba multiplier and modifiedItoh Tsujii multiplicative 

inverse algorithm (ITA) are used for finite field arithmetic 

operation which increases its efficiency. Compact and faster 

design can be realized in this proposed method. 

Index Terms – Karatsuba multiplier, Itoh Tsujii algorithm (ITA), 

Field Programmable gate array (FPGA). 

1. INTRODUCTION 

Elliptic Curve cryptography is one type of public-key 

cryptography which is based on the algebraic structure of 

elliptic curves over finite fields. The advantages of ECC over 

other technique are high level of security and the usage of small 

keys. In the field of Mobile, Wireless and Network servers, to 

sustain the high throughput the implementations of high speed 

crypto-systems are needed. ECC has been extensively used for 

hardware implementation of FPGA. In 1985 Koblitz and V. 

Miller [1,2] independently proposed ECC using the group of 

points on an elliptic curve defined over a finite field in discrete 

log cryptosystems.  The better performance can be 

obtained in the binary field extension [5] since addition is done 

by XOR operation where no carry is involved. 

The most important operation in ECC is scalar multiplication. 

It is just calculating kP in equation 1. 

Q = kP   (1) 

Where Q- public key which is also a point        on     the elliptic 

curve 

k- Private key(scalar) 

P- Base point on a curve 

Elliptic Curve Cryptosystem has three hierarchical layer as 

shown in Figure 1.  The performance of the top layers of the 

hierarchy depends on the performance of the underlying layers. 

It is therefore important to have efficient implementations of 

finite field operations such as squaring, addition, multiplication 

and inversion. Among these, finite field multiplication and 

inversion most critically affect the performance of the Elliptic 

Curve Cryptosystem. 

Elliptical curve arithmetic is done by using affine coordinate 

system. The cost of inversion in affine coordinates is much 

more expensive so it is done by using projective coordinate 

representation [6]. 

 

Figure 1: ECCHierarchy 

2. MATHEMATICAL REVIEW 

Hybrid Karatsubamultiplier [7] is proposed for a high 

performance elliptic curve crypto processor which requires less 

amount of space on FPGA. 

The Karatsuba algorithm is done by splitting the n bit 

multiplicands into two 2-term polynomials: A(x)=Ahxm/2+A1 

and B(x)=Bhxm/2+B1.The multiplication is then done using 

three  m/2 bitmultiplications as shown in equation 2. The three 

m /2 bit multiplications are then implemented recursively. 

C' (x)=( Ahxm/2+A1)( Bhxm/2+ B1) 

=AhBhxm+ (Ah B1+ A1Bh) xm/2+ A1 B1 

= AhBhxm+ ((Ah + A1)(Bh +B1) +AhBh +A1 B1) xm/2+ 

A1 B1 

                    (2) 

Finite field inversion is commonly done by Euclidean 

algorithm and Itoh-tsujiialgorithm [8]. Even though the ITA is 

faster it requires large area which is mainly due to the 

multiplication unit. All cryptographic applications require 

toperform finite field multiplications, hence their hardware 

implementations require a multiplier to be present. This 

multiplier can be reused by the ITA for inverse computations. 

In this case the multiplier need not be considered in the area 
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required by the ITA[4].So ITA algorithm is preferred over 

Euclidean algorithm. 

The Multiplicative Inverse of an element a∈GF(2m) is the 

element a-1∈GF(2m) such that a a-1≡ a-1 a≡1mod(m). From 

Fermat’s Little Theorem, the multiplicative inverse can be 

written as  

𝑎−1 = 𝑎2𝑚−2 = (𝑎2𝑚−1−1)2 

The implementation of a-1 requires (m-2) multiplications and 

(m-1) squaring. Addition chains are efficiently usedwhich 

reduces the number of multiplication in ITA algorithm. An 

Addition Chain for m∈ N is a sequence of integers of the form 

U=(u0,u1,u2…ur) satisfying the properties u0=0,ur=1,ui=uj+uk 

for k≤j<i.  An addition chain for 232 is given by equation 3. 

U = (1 2 3 6 7 14 28 58 116 232)     (3) 

  

Let 𝛼𝑘(𝑎) = 𝑎2𝑘−1 ∈GF(2m) and 𝛼𝑘+𝑗(𝑎) =

(𝛼𝑘)2𝑗
𝛼𝑗. If a ∈GF(2233) then      a-1=  (𝛼232(𝑎))2. 

3. TOP LAYER 

Scalar multiplication (Q=kP) 

The basic operations that are performed to compute kP are 

Point Addition and Point Doubling. The Elliptical curve scalar 

multiplication (Q=kP) is done by adding k times P, where P is 

the point on the curve k is an element on the finite field GF(2m).  

Algorithm 1 is used to compute scalar multiplication. 

Algorithm 1: Elliptical Curve Scalar Multiplier 

Input: An integer k≠0 of length l bits and base point P 

Output: Q=kP 

begin 

   Q=O 

for i=l-2downto 0do 

 Q=Double(Q) 

 ifki=1 then 

     Q=Add(Q,P)  

 end 

end 

end 

4. MIDDLE LAYER 

Using affine coordinates point addition operation of two points 

P=(x1,y1) and Q=( x2, y2) is  the point R= (x3, y3) =P+Q where 

x3=λ2+ λ+x1+x2+a 

y3= λ (x1+x3)+x3+y1 

λ =(y1+y2)/(x1+x2) 

Point doubling operation is R=(x3,y3)=P+P where 

x3=λ2+ λ+a 

y3= λ (x1+x3)+x3+y1 

λ = x1+y1/x1 

Point addition is performed by using two field multiplications, 

one squaring and one inversion. Point doubling requires one 

extra squaring operation. It is well known that projective 

coordinates avoids the inversion operation in each ECC point 

addition but it introduces more field multiplication (seven for 

Point addition and twelve for Point doubling). So, in a 

hardware implementation, the inversion module is done by 

using projective coordinates. 

5. LOWER LAYER 

Finite Field Addition 

Finite field addition is performed by using XOR operation so it 

does not involve any carry. 

Finite Field Multiplication 

Finite Field Multiplication is done by using Hybrid Karatsuba 

multiplier which combines Simple Karatsuba multiplier and 

General karatsuba multiplier. 

The advantage of General Karatsuba multiplier is percentage 

of underutilized LUTs is low. But for large multiplicands, 

numbers of gates required are high which exceeds the benefit 

obtained by the full utilized LUTs result in bigger area. So 

Simple karatsuba multiplier is used for large multiplicands and 

General Karatsuba is used for smaller multiplicands.  

Figure 2 shows the Hybrid Karatsuba multiplier, the initial four 

recursions are done by using Simple Karatsuba multiplier 

results in low gate count, while the final recursion is done by 

using 14 bit and 15bit General Karasuba multiplier which 

results in low underutilized LUTs. 

 

Figure 2-233 bit Hybrid Karasuba Multiplier 
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Table 1: Inverse of a GF(2m)  using Quad-ITA  

Finite Field Inversion 

Quad ITA is proposed which uses quad circuits (ie rise to the 

power 4) instead of squarer circuits to obtain the a-1. The 

procedure for obtaining the inverse of an element using the 

quad-ITA is shown in Algorithm 2. In the algorithm 𝛼𝑘(𝑎) =

𝛼𝑘 = 𝛼4𝑘−1. 

Algorithm 2: Quad-ITA 

Input: The element a∈GF(2m) and Brauer chain 

  U={1,2….
𝑚−1

2
}  

Output: The multiplicative inverse a-1 

begin 

l’=length(U) 

    a2=a*a 

α𝑢𝑖=𝑎3 = 𝑎2. 𝑎 

for each 𝑢𝑖 ∈ 𝑈(2 ≤ 𝑖 ≤ 𝑙′)do 

 𝑝 = 𝑢𝑖−1 

 𝑞 = 𝑢𝑖 − 𝑢𝑖−1 

 𝛼𝑢𝑖=𝛼𝑞 ∗ 𝛼𝑝
4𝑞

 

end 

𝑎−1 = 𝛼𝑢
𝑙′ ∗ 𝛼𝑢

𝑙′  

end 

This algorithm computes  

𝑎−1 = [𝛼𝑚−1 2⁄ (𝑎)]2.The major advantage of this method is 

(m-1)/2 addition chains is used instead of (m-1) so the clock 

cycle is saved and also it uses the FPGA resources better. The 

Table 1 shows the inverse of a GF(2m)  using QUAD-ITA. 

To precompute a3 if the combinational multiplier is used for 

squarer, two clock cycles are neededso the total clock cycle for 

the quad block, while 𝑙′ + 2 is the clock cycles used by the 

multiplier 

#𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = (𝑙′ + 2) + ∑ ⌈
𝑢𝑖 − 𝑢𝑖−1

𝑢𝑠

⌉

𝑙′

𝑖=2

 

Quad block 

The Quad block consists of cascadedus Quad circuits with the 

input as qin as shown in Figure 3.If the number of power4 

required is less than 8 then the multiplier is used to tap out the 

interim output. If it needs greater than us then the output of 

Quad block is again fed back as the input.  qsel will decide which 

of the eight powers is taken as the output. 

 

 

 

 

 

 

 

The quad block should be designed in such a way that it should 

be tradeoff between area and clock cycle. If lp be the LUTs and 

tp be the combinational delay for the single quad circuits, then 

the LUTs and the combinational delay for us quad circuits are 

uslp, us tp.In order to obtain the stable frequency of operation the 

combinational delay should be less than the maximum 

combinational delay of the entire design. The maximum 

combinational delay will occur in Karatsubamultiplier so 

ustp<Delay of multipliers 

The quad circuit should be selected in which the delay should 

be closer to the multiplier delay. If the quad circuits are reduced 

the clockcycle is less but the area is more and vice versa. It’s 

found that the best result is obtained with 8 cascaded quad 

circuits. 

The addition chain for the quad block is (m-1)/2 and shortest 

addition chain is chosen, so that less memory is needed. The 

memory required for the addition chain is to store the results 

from intermediate steps. 
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Figure 4Elliptic Curve Crypto Processor 
 

6. ELLIPTICAL CURVE CRYPTO PROCESSOR 

The architecture of the processor shown in figure 5 has three 

main blocks. ALU, Registers andControl unit. The input to the 

processor is the base point Px,Py and the key k and the output is 

kP. The processor implements the scalar multiplication 

described in Algorithm. The register bank contain dual port 

registers whose output is given to the Arithmetic Unit through 

5 buses A1, A2, A3, A4, Qin and the input is from the output 

of the AU through the buses C0, C1, Qout. Elliptical curve 

operations are controlled by the control signals(c[0]…c[32]) 

generated every clock cycle.  

The Arithmetic coordinate implement Point Addition and point 

Doubling in Projective coordinate. Quad block uses 8 Quad 

circuits which is suitable for the Processor to reduce the clock 

cycle and the area. 

7. EXPERIMENTAL RESULTS 

Figure 5 and 6 shows the simulation result of 233 bit hybrid 

Karatsuba multiplier and ALU. The ALU is synthesized using 

Xilinx ISE synthesis tool (Version 11.1) and the LUTs, 

Delays(Table 1) forGF(2233) binary field with irreducible 

trinomial specified in NIST Digital Signal standard are 

compared for various devices.    

 

 

Figure 5 Simulation result of 233 bit Hybrid Karatsuba 

multiplier 

Devices LUTs Delay 

Virtex4 25264 28.465ns 

Virtex5 17119 15.614ns 

Spartan3 25264 30ns 

Automotive 

Spartan 2E 

25264 52.29ns 

Table 2 Comparison of ALU for various Devices 
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Figure 6 Simulation result of ALU in the ECC Processor 

8. CONCLUSION 

Elliptical curve cryptography Processor can be efficiently 

implemented on FPGA by using Hybrid Karatsuba multiplier 

and modified ItohTsujii inverse algorithm. The Hybrid 

Karatsuba multiplier can be used in Elliptic Curves to minimize 

the LUTs required and increase the operating frequency. Quad 

block with 8 cascaded Quad circuits for Itoh Tsujii algorithm 

for inversion will give better performance in area and clock 

cycles. 
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